On p-adic multiple zeta and log gamma functions

نویسندگان

  • Brett A. Tangedal
  • Paul T. Young
چکیده

We define p-adic multiple zeta and log gamma functions using multiple Volkenborn integrals, and develop some of their properties. Although our functions are close analogues of classical Barnes multiple zeta and log gamma functions and have many properties similar to them, we find that our p-adic analogues also satisfy reflection functional equations which have no analogues to the complex case. We conclude with a Laurent series expansion of the p-adic multiple log gamma function for (p-adically) large x which agrees exactly with Barnes’s asymptotic expansion for the (complex) multiple log gamma function, with the fortunate exception that the error term vanishes. Indeed, it was the possibility of such an expansion which served as the motivation for our functions, since we can use these expansions computationally to p-adically investigate conjectures of Gross, Kashio, and Yoshida over totally real number fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dwork ’ s conjecture on unit root zeta functions

In this article, we introduce a systematic new method to investigate the conjectural p-adic meromorphic continuation of Professor Bernard Dwork’s unit root zeta function attached to an ordinary family of algebraic varieties defined over a finite field of characteristic p. After his pioneer p-adic investigation of the Weil conjectures on the zeta function of an algebraic variety over a finite fi...

متن کامل

ar X iv : d g - ga / 9 70 10 08 v 3 2 1 A pr 1 99 7 Geometric zeta - functions on p - adic groups ∗

We generalize the theory of p-adic geometric zeta functions of Y. Ihara and K. Hashimoto to the higher rank case. We give the proof of rationality of the zeta function and the connection of the divisor to group cohomology, i.e. the p-adic analogue of the Patterson conjecture. Introduction. In [13] and [14] Y. Ihara defined geometric zeta functions for the group PSL2. This was the p-adic counter...

متن کامل

Zeta Functions for Curves and Log Canonical Models

The topological zeta function and Igusa's local zeta function are respectively a geometrical invariant associated to a complex polynomial f and an arithmetical invariant associated to a polynomial f over a p{adic eld. When f is a polynomial in two variables we prove a formula for both zeta functions in terms of the so{called log canonical model of f ?1 f0g in A 2. This result yields moreover a ...

متن کامل

Rational series for multiple zeta and log gamma functions

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L-functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-...

متن کامل

q-BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH MULTIPLE q-ZETA FUNCTIONS AND BASIC L-SERIES

By using q-Volkenborn integration and uniform differentiable on Zp, we construct p-adic q-zeta functions. These functions interpolate the qBernoulli numbers and polynomials. The value of p-adic q-zeta functions at negative integers are given explicitly. We also define new generating functions of q-Bernoulli numbers and polynomials. By using these functions, we prove analytic continuation of som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011